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Abstract

Gut bacteria secrete genotoxic and pro-inflammatory factors that contribute to the

development of colorectal cancer (CRC). The genotoxin Uropathogenic Specific Protein (Usp),

made by some E. coli strains, is of particular interest since previous studies from our group

identified a higher frequency of the usp sequence in Adenoma and CRC stool samples from US

and PR cohorts, compared to healthy individuals. By using DNA sequencing and bioinformatic

approaches, we also found usp genetic variants directly associated with CRC. It was observed

that the usp sequence contained a conserved domain resembling the hemolysin-coregulated

protein (Hcp), a component of the Type VI Secretion System (T6SS), that is involved in the

secretion of toxic molecules. Due to its ring-like structure, Hcp functions as a channel that

connects to the VgrG spike protein, which penetrates the target cells under this secretory system.

However, the role of Hcp as a domain embedded in the N-terminal of Usp, and its relationship

with inflammatory conditions such as adenomas and CRC, remains unclear. Therefore, this

project aims to investigate the frequency of Hcp domain sequences of Usp, along with other Hcp

variants from E. coli, in the metagenomic datasets of healthy, adenoma, and CRC patients. To

our knowledge, this will be the first attempt to elucidate an association between Hcp and cancer

progression using publicly available metagenomic data.
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Chapter 1. Introduction
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The American Cancer Society predicts that in 2021, approximately 52,980 Americans

will perish from colorectal cancer (CRC). In the United States of America, CRC is the third most

common cause of death due to cancer for both men and women separately and, when grouped

together, it becomes the second leading cause of cancer-related death. The Puerto Rican

Association of Gastroenterology states that CRC is the second most common cancer type, in both

men and women, in Puerto Rico. The association also mentions that CRC is the second cause of

death due to cancer in women and, in the case of men, it is the third cause. 

After numerous years of investigation, researchers have concluded that the development

of CRC is dependent on both genetic and environmental factors. As the PDQ Cancer Information

Summaries states, approximately 75% of individuals with colorectal cancer have a sporadic

disease, that is, their condition appears to not have been inherited. These evidence-based

summaries also inform how the remaining 10% to 30% of cases do have a family history of

colorectal cancer, therefore their condition is more likely to have emerged from a hereditary

contribution on the genetic level (PDQ Cancer Genetics Editorial Board, 2020). The CDC states

that the 75% of cases that did not inherit the condition genetically can be due to different factors

such as low fiber and high-fat diets, high consumption of processed meats, inflammatory bowel

diseases, obesity, tobacco use, alcohol consumption, and other environmental cues (CDC, 2021). 

An environmental factor that has recently been given much attention is the gut

microbiota, or the diverse community of microorganisms that lives in the human gut. It is

thought that gut microbiota plays an essential role in cancer development. An intrinsic

relationship between gut microbiota and colorectal cancer has been discovered since these gut

bacterial communities can promote or suppress tumor development and growth. It has been
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found that the microbiota in the intestines uses different mechanisms to manipulate the

environment, which may lead to tumorigenesis (Brennan & Garett, 2016). A vital member of

these microbial communities is Escherichia coli. This bacterium inhabits the intestines of healthy

animals and humans, but there are numerous strains of E. coli that could be opportunistic, which

explains why its presence may trigger different effects. For example, it has been found that E.

coli that produce colibactin, such as B2 E. coli, are associated with CRC development (Raisch, et

al., 2014). Specifically, E. coli has been found with greater frequency in the mucosa of patients

with CRC than in that of healthy individuals (Swidsinski, et al., 1998; Martin, et al., 2004).

   The Uropathogenic specific protein, or Usp, is a bacteriocin-like genotoxin found in

some E. coli strains that has demonstrated to cause DNA damage and cytoskeleton

rearrangement in endothelial cells as it is shown in Figure 1.1 (Nipič, et al., 2013). The research

paper "Escherichia coli Uropathogenic-Specific Protein, Usp, is a Bacteriocin-Like Genotoxin"

(Nipič, et al., 2013) explored the biochemical and biological function of Usp as well as its ability

to cause DNA damage in the host cell, and it was discovered that "Usp possesses DNase activity

and, particularly when coapplied with Imu2, exhibits genotoxic activity in mammalian cells"

(Nipič, et al., 2013, p. 1545). Further work determined that infection with E. coli strains

harboring Usp together with its imu1-3 proteins, affected mammal cells' viability and induced

apoptosis.
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Figure 1.1

Figure 1.1 Usp DNA damage in HUVEC cells using Fluorescence microscopy and Comet Assay (Nipic, et
al., 2013). The images display the control group of human umbilical vein endothelial cells (HUVEC)

infected with E. coli usp- imu1-3- (A) and HUVECs infected with E. coli usp+ imu1-3+ (B). The graph

included reflects the results from the Comet Assay, which shows that treated usp cells displays a
statistically significant increase in genotoxic activity when compared to the control cells, which is seen in
the greater percentage of tail DNA, an indicator of DNA damage. Standard deviation error bars are
included. Asterisks (**) indicate P < 0.001when compared to control cells.
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Previous research from our lab has established a relationship between the presence of

specific genes, in this case the gene encoding Usp in E. coli, and CRC. This topic is explored in

“The Presence of Gut Microbial Genes Encoding Bacterial Genotoxins or Pro-Inflammatory

Factors in Stool Samples from Individuals with Colorectal Neoplasia” (Gómez-Moreno, et al.,

2019, which evaluates the presence of certain genes linked to genotoxicity and pro-inflammatory

factors in patients with adenomas and/ or CRC from US and Puerto Rico. The results obtained

after completing the PCR analysis of the stool samples revealed a higher presence of usp in CRC

and adenomas patients when compared to healthy individuals in the US cohort, while in PR this

presence is higher in adenomas cohort (Figure 1.2), indicating a possible trend that links

genotoxic genes such as usp to these diseases.

The paper, "Hotspots of Sequence Variability in Gut Microbial Genes Encoding

Pro-Inflammatory Factors Revealed by Oligotyping" (Gómez-Moreno, et al., 2019) furthers this

analysis. In said report, the sequence variability for some of these bacterial genes was explored,

using a combination of deep sequencing and the process known as oligotyping, which is an

application for data analysis that identifies the "hotspots" of mutations in short segments of

DNA. The research found that the amplicons for usp from stool samples revealed the presence of

five distinct oligotypes in two different regions (Gómez-Moreno, et al., 2019, p. 1). The GT

sequence oligotype was present in a single isolate of uropathogenic bacteria and was also

detected in fecal samples of individuals with CRC. Variants of the usp gene sequence in
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metagenomic databases were also found, which raised the possibility that some variants may

have different activities and different toxicity profiles.

Figure 1.2

Figure 1.2. Frequency of the presence of usp gene sequences in US and PR clinical stool samples (Edited
figure from Gomez-Moreno, et al., 2019). This graph was obtained from a previous study that investigated
the presence of gut microbial genes that encode bacterial genotoxins or pro-inflammatory factors,
including the usp gene sequence. The data for the US patients (N = 10 per condition) was obtained from
the Early Detection Research Network (EDRN) and that of the PR sample, from the University of Puerto
Rico Comprehensive Cancer Center (UPR CCC).

6



Many experiments have also been conducted to find the prevalence of usp gene

sequences in inflammatory conditions such as Inflammatory Bowel Disease (IBD). The article

"The Presence of Genotoxic and Pro-Inflammatory Bacterial Genes in Gut Metagenomic

Databases and Their Possible Link With Inflammatory Bowel Diseases" (Roche-Lima, et al.,

2018) focuses on studying how the presence of bacterial genes that are genotoxic and

pro-inflammatory affect gut microbiota and various inflammatory diseases such as Crohn's

Disease and ulcerative colitis. The most relevant result of this experiment was that the murB

Enterobacteriaceae and Enterococci gene sequences were found more frequently in IBD cohorts

than in the healthy cohort. Surprisingly, the frequency of usp sequences was sharply increased in

these IBD conditions, particularly in Ulcerative colitis, while gelE sequences (another bacterial

toxin from E. coli) were found more frequently in Crohn’s disease, suggesting “a significant

association between the presence of some of these genotoxic or pro-inflammatory gene

sequences and IBDs" (Roche-Lima, et al., 2018, p. 2). In the article “Characterization

of Escherichia coli Isolated from Gut Biopsies of Newly Diagnosed Patients with Inflammatory

Bowel Disease" (Sepehri, et al., 2011), which focused on how mucosa-associated strains of E.

coli from intestinal biopsies may play a role in the pathogenesis of inflammatory bowel diseases

(IBDs), usp sequences were also found in Ulcerative colitis patients. However, no association

was found between the isolated strains of E. coli and inflammation in IBD tissues. On the other
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hand, it was found that "E. coli isolated from IBD patients were significantly more invasive

than E. coli isolated from HC (Healthy Cohort)" (Sepehri, et al., 2011, p. 1456).

In terms of the structure composition, even though Usp was originally described as a 346

amino acid sequence with principal domains, genotoxicity studies have found that Usp is

composed of three different domains that add up to a 593 amino acid protein (Figure 1.3). An

analysis of the amino acid sequence conservation in Usp showed that it contained (1) an

N-terminal Hemolysin-coregulated protein (Hcp) domain, (2) an extended C-terminal S-type

pyocin domain, and (3) a colicin nuclease domain (Rihtar, et al., 2020). Of these three, the

nuclease domain is best characterized, which is one of the reasons Usp has been found to have

nuclease activity. Despite this, the role of the N-terminal Hcp domain is still unclear and will

thus be this studies’ focus. Hcp is a protein family comprised of different genetic sequences that

can be found integrated into other proteins or by itself. Due to their hexameric structure seen in

Figure 1.4, Hcps, along with Valine glycine repeat protein G (VgrG), have been found to play an

essential role in the Type 6 Secretion System (T6SS) (Ma, et al., 2017). There are also isoforms

of Hcp that vary in their functions; for example, Hcps in some organisms has been related to

bacterial competition and colonization, and it could thus contribute to the pathogenicity of

specific bacterial strains, such as in E. coli (Ma et al., 2017).
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Figure 1.3

Figure 1.3. Homology-based structure model of Usp. This figure demonstrates the three domains that
make up the Usp protein: the N-terminal Hcp domain (purple), the extended C-terminal S-type pyocin
domain (green), and the colicin nuclease domain (blue). Constructed using homology-based structure
prediction (I-TASSER, 1996 & VMD, 2015).
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Figure 1.4

Figure 1.4. Crystal structure of Hcp-1 protein from Acinetobacter baumannii AB0057 (Ruiz, et al., 2015).
The figure depicts the hexameric ring structure that Hcp proteins found in species harboring T6SS
possess.
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The research paper "Haemolysin Coregulated Protein is an exported receptor and

chaperone of Type VI Secretion substrates" (Silverman, et al., 2013) investigates and analyzes

the function of Hcp. They reported that Hcp is both a chaperone and a receptor protein of the

T6SS. By focusing on the Tse2 protein, it was found that "a direct and highly specific interaction

with the pore of its cognate Hcp, Hcp1 of the H1-T6SS, is required for the stability and export of

the protein" (Silverman, et al., 2013, p. 585). The study shows that effectors with unrelated

sequences, such as Tse1 and Tse2, also require direct interactions with the Hcp1 pore for

secretion.

The article "Three Hcp homologs with divergent extended loop exhibit regions different

functions in avian pathogenic Escherichia coli" (Ma, et al., 2018), focuses on T6SS's

contribution to the pathogenicity of the avian pathogenic Escherichia coli (APEC), one of the

causal agents of sepsis and meningitis in birds. The Hcp protein was found to play a crucial role

in the system as "the variant region Vs2 (Loop L2, 3) in Hcp1 and Hcp2B was essential for the

delivery of antibacterial effectors and the inhibition of macrophage phagocytosis" (Ma, et al.,
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2018, p. 1). Similarly, the researchers used a duck-specific Hcp that indicated that these Hcp

proteins had different functions in APEC's pathogenic process and in immunoprotection. The

research paper "Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal

pathogenic Escherichia coli type VI secretion system" (Peng, et al., 2016) explored the role of

Hcp family proteins, specifically in the pathogenesis of the T6SS in the extraintestinal porcine

pathogenic E. coli, or ExPEC. Research also showed that the Hcp protein family was involved in

bacterial competition and contributed to organ colonization in the PCN033 strain of the porcine

ExPEC but was not involved in bacterial adhesion. Interestingly, it was also discovered that the

three Hcp proteins found, Hcp1, Hcp2, and Hcp3, had different functions. The article mentions

how "Hcp2 functioned predominantly in bacterial competition; all three proteins were involved

in the colonization of mice; and Hcp1 and Hcp3 were predominantly contributed to

bacterial-eukaryotic cell interactions" (Peng, et al., 2016, p. 1).

In turn, the review, "Effector–Immunity Pairs Provide the T6SS Nanomachine its

Offensive and Defensive Capabilities" (Yang, et al., 2018), describes the cylindrical structure of

T6SS, which occurs due to the hexameric structure of Hcp proteins. The reading explains how

"the antibacterial functions of T6SSs are attributable to secreted antibacterial effector toxins,

which are neutralized in secretor strains by corresponding antagonistic immunity proteins that

prevent self-killing or sibling-intoxication" (Yang, et al., 2018, p. 2). The review concludes that

E-I pairs constitute a new module of toxins-antitoxins, thus protecting sister cells against effector

toxins. Additionally, the review "Type VI Secretion System in Pathogenic Escherichia coli:

Structure, Role in Virulence, and Acquisition" (Navarro, et al., 2019) studied the T6SS’s

structure, its role in virulence, and the acquisition of this system in pathogenic E. coli. The
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authors mention that the central role of T6SS is in bacterial competition, since it can kill

neighboring bacteria that are not immune. However, some T6SS have been directly associated

with pathogenesis. The article mentions how pathogenic E. coli strains “have acquired a variety

of sophisticated protein exporting nanomachines to secrete an arsenal of virulence factors

implicated in their virulence. Both secretion machineries and effector proteins have been

acquired by horizontal gene transfer through several kinds of mobile genetic elements" (Navarro,

et al., 2019, p. 13). 

Since little is known about the role of Hcp as an N-terminal domain of effectors proteins,

in this study we examined the relationship between the presence of DNA sequences encoding

Hemolysin-coregulated protein (Hcp) in publicly available human microbiome datasets, and the

incidence of adenoma and colorectal cancer. To do so, we employed the Basic Local Alignment

Search Tool (BLAST) algorithm to count the hit frequencies of the hcp DNA sequences, along

with other genes of interest related with T6SS, such as vgrG1 and tssk, among the metagenomic

datasets of healthy, small adenoma, large adenoma, and CRC patients. These results were

quantified and analyzed. Our research focused on searching for the following gene sequences:

the Hcp domain embedded within Usp from E. coli strains (Hcp) as well as, Hcp-1, Hcp-2, and

Hcp-3, which are Hcp isoforms that are found individually in the PCN033 E. coli strain.

Therefore, our main research question asked if the hcp gene sequences were more

frequently found in the patients from Adenoma and CRC cohorts than in datasets from healthy

controls? Beyond answering this direct question concerning the involvement of hcp in CRC and

Adenoma, a reusable automated computational method was begun to facilitate the analysis of

multiple bacterial genes in the etiology of CRC. The proposed computational platform may, in
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the future, fulfill the Human Microbiome Project’s primary goal: to simplify the characterization

of the microbiota found in the human body to obtain greater knowledge on the impact that these

communities and their products secretion can have on human health. Therefore, this experiment

aims to quickly obtain information that could be useful for the medical field and society, since

the topic has not been explored yet. Thus, after analyzing the experimental data, our goal is to lay

the foundation that serves as a starting point from which one can understand and study microbial

involvement in these diseases.

To the research problem, our hypothesis states that we will find a higher number of Hcp

DNA sequences in the datasets obtained shotgun metagenomics of stool samples from adenoma

and CRC patients than in those from healthy individuals. This positive association that is

hypothesized stems from the findings of previous experiments that explored Hcp and Usp

proteins and their roles in colorectal health. Studies have found that bacterial genotoxic and/ or

pro-inflammatory factors in the digestive tract can contribute to different diseases. For example,

genetic usp polymorphisms associated with CRC have been found. Given these discoveries, the

efforts of our research group will result in the creation of a pathway designed to investigate the

prevalence of the Hcp domain and its genetic variants, along with other genes of interest, like

tssk, vgrG1, and the usp sequence without the Hcp domain, in the databases of patients with

adenoma or colorectal cancer and healthy individuals. 
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Chapter 2. Quantify and evaluate the presence of the Hcp and related sequences in the

metagenomic datasets from the healthy, adenoma, and CRC cohorts.

2.1 Introduction

Previous studies have found that some genotoxic and pro-inflammatory factors of

bacteria in the digestive tract contribute to the development of various diseases, including

colorectal cancer (CRC) (Gómez-Moreno, 2019). One of these pro-inflammatory factors made

by bacteria is the uropathogenic specific protein or Usp, a multidomain protein originally found

in E. coli from urinary tract infections, but later found in gut-specific strains. In previous work,
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our research group showed that the usp gene was more frequently found in stool samples from

patients with adenomas and CRC compared to healthy individuals (Gómez-Moreno, 2019).

Moreover, genetic usp polymorphisms associated with CRC have also been found in stool

through the DNA sequencing of patient samples.

The N-terminus of Usp is occupied by a domain with homology to the hemolysin-

correlated protein (Hcp), a 247 amino acid protein that has been found both as a stand-alone

protein and as an embedded domain within a multi-domain protein. The stand-alone Hcp has

been found to serve as an essential hallmark of the Type VI Secretion System (T6SS) and seems

to be involved in bacterial competition and organ colonization in the PCN033 strain of the

porcine ExPEC (Peng, et al., 2016). E. coli can harbor some or all of three hcp genes: hcp-1,

hcp-2, and hcp-3, three independent stand-alone Hcp that are associated with T6SS. These

individual sequences were originally identified in the E. coli PCN033 bacterial strain and varied

in function and in sequence length: hcp-1 was 161 amino acids long, hcp-2, 173 amino acids, and

hcp-3, with 383 amino acids, was the longest protein. Specifically, Hcp-2 seemed to function in

bacterial competition, while Hcp1 and Hcp3 were associated to bacterial-eukaryotic cell

interactions (Peng, et al., 2016).

Another protein found in the T6SS is vgrG-1 a key member of the spike that enables the

system to penetrate and dispense the effectors into the target cell. This vgrg sequence, along with

the hcp sequences, is thought of as an indicator of the presence of T6SS, which has been

associated to infection and inflammation (Hersch, et al., 2020). Another gene of interest in tssK,

a structural component of the T6SS that is another indicator of this system in the individuals

studied. Specifically, this 449 amino acid protein sequence from the Escherichia coli O2:H6
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strain is a baseplate component of the T6SS and is the factor responsible for mediating the

baseplate’s docking to the membrane of the target cell (Navarro, et al., 2019).

In this chapter, we verified the frequency of ten genes to establish their presence among

the three patient cohorts: cancer, adenomas, and healthy (Table S1); seven possible components

of T6SS and three control genes. The T6SS genes of interest included (1) usp without the Hcp

domain (Usp), (2) the hcp portion of the usp gene (Hcp), (3) hcp1, (4) hcp2, (5) hcp3, (6) vgrg-1

and (7) tssk. The ECmurB from E. coli and EFmurB from Enterococcus faecalis gene sequences

were used as controls, since both are housekeeping genes and are thus expected to be present

similarly in all three cohorts. Secondly, the AMmurB gene sequence from Akkermansia

muciniphila was included since it has been previously linked to CRC and other inflammatory

conditions (Weir, et al., 2013).

2.2 Methods

2.2.1 Study site and metagenomic data obtainment

The research was carried out at the Medical Sciences Campus, specifically at Dr. Abiel

Roche-Lima's laboratory, from August 2020 until November 2021. This location provided

appropriate access to the genomic sequences necessary to carry out the analysis. The whole

metagenomic DNA sequence data was obtained from the European Nucleotide Archive

(https://www.ebi.ac.uk/ena) database (Accession No. PRJEB12449). The selected data was

originally obtained as part of a case-control study conducted in Washington DC (Vogtmann, et

al., 2016). This dataset has been used in the past to identify bacterial genes associated with CRC,

but it also includes individuals diagnosed with small adenoma and large adenoma. These
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databases also included sequences from healthy individuals who were not diagnosed with any of

the diseases mentioned before.

2.2.2 Genes of interest

The DNA sequences for the genes of interest, which include hcp1, hcp2, and hcp3, along

with vgrG1, the Hcp domain from Usp (hcp), and tssk, were acquired from the PCN033 and E.

coli O2:H6 strains (Table S1). Specifically, we used the PCN033 strain for the hcp1-3 sequences

and for vgrG1. The E. coli O2:H6 strain was used for the Hcp domain from Usp (hcp) and tssk.

Additional genes, such as clbB, gelE, and tcpC were also analyzed.

2.2.3 BLAST analysis

The sequences were all used as queries in independent BLAST searches among the healthy

(N = 61), adenomas (N = 42: small adenoma N = 27; large adenoma N = 15), and CRC (N = 53)

patient-derived sequences. The number of times that these specific sequences aligned with those

of the patients from each cohort was quantified to make an assessment on whether a statistically

higher number of "hits" is observed in any of the disease groups. It should be noted that patients’

personal information always remained anonymous, and individuals voluntarily shared their

genomic information during the collection of DNA samples. 

To carry out this project, the gene sequences of the patients from each of the four cohorts

were downloaded and decompressed in Fastq format. The sequences were then filtered and

separated based on the specific disease, that is, small adenoma, large adenoma, cancer, and

healthy. These files were then merged and converted to Fasta format for easier processing in the

proceeding steps. Once the sequences are ready, our metagenomic analysis pipeline, which

mimicked the NCBI-BLAST, or "Basic Local Alignment Search Tool" database, was executed
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using the Linux command line. This useful tool used to study specific gene sequences was

employed to analyze the genes of interest against the patient databases with the WGS sequences,

created for each of the four groups. This process was carried out two times since all patients were

evaluated twice to produce two replica groups to ensure validity.

2.2.3 RStudio analysis

After running the BLAST algorithm, the gene sequence alignment results for each set of

replicas within each cohort was evaluated using the RStudio program. Firstly, all patients who

did not meet the definition of a “hit” were filtered out. That is, only the patients who presented at

least one hit in each of the two replicas for a specific gene were considered and studied.

Afterwards, the hit results from the two replica groups of these individuals were merged and

averaged. After carrying out this data retrieval three times, the sequence hit results obtained were

organized and analyzed through RStudio’s statistical programming language. For this next stage,

given how the sample sizes of the small adenoma (N = 27) and large adenoma (N = 15) are

individually inferior to those of the healthy (N = 61) and CRC (N = 53) cohorts, we analyzed the

two adenoma groups as one, where N = 42.

Having grouped the adenomas and once all gene sequence hits were quantified, the

frequency percentage of the each gene within each cohort was calculated using formula 1, where

“Positives” equals the number of patients that were positive for the specific gene within each

individual cohort and “N” is the total number of individuals in each cohort.

(1)𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 % =  ( 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑁 )𝑥 100
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The frequency results obtained were included in a table, along with the total number of

hits and the number of positive patients per gene per cohort.

Using the RStudio program, we conducted Fisher’s Exact Test to evaluate the statistical

significance between the number of positive patients found in each gene for the adenomas and

CRC groups against those found in the healthy cohort. Therefore, by obtaining these specific

p-values, we assessed if there was a stronger correlation between the genes of interest and a

particular group. Specifically, all P < 0.05 were considered significant. These P-values were also

included in the previously mentioned table, alongside the frequency values.

To verify how the hits for each gene were distributed among the patients, we used the

RStudio program to quantify the number of hits each patient had per gene. Once this information

was obtained, we created a table where the average number of hits for each gene between the

positive patients, as well as the minimum and maximum values, median, mode, and the standard

deviation for these values in each cohort, is presented.

2.2.4 Data visualization: Tables and Figures

The tabulated data was used to generate figures using the GraphPad Prism 6 program.

Specifically, two clustered column graphs were generated: one which compares the total gene hit

results for each gene in each cohort and one that displays the frequency percentages per gene per

cohort.

2.2.5 Hcp-Usp gene Hits Alignment
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To visualize the distribution of the Usp and Hcp domain sequences obtained in the study,

using the NCBI web page, six NCBI BLAST Alignment Graphs were generated. Specifically,

these hit sequences were aligned against the complete Usp sequence, that is, the Usp protein with

its three domains. Thus, for each cohort, two graphs were generated: one for the hit sequences

for the Hcp domain (Hcp) and another for the hits obtained for Usp without the Hcp domain

(Usp).

2.3 Results

The genes of interest were aligned with the metagenomic data from each cohort, that is,

Healthy, adenoma, and CRC groups. The sequence hit results, alongside their respective

frequencies and the number of patients positive for a specific hit, were tabulated. The data for the

small and large adenoma patients was grouped to obtain a more similar group number (N) to that

of the cancer and healthy cohorts. Our general results showed that VgrG1 is present at a

significantly increased frequency (43%; P-value = 0.05) in the adenomas group in comparison to

the healthy cohort (23%) (Table 2.1). However, this increase in frequency was not seen in the

cancer group (21%). Surprisingly, the Hcp domain and Usp sequences were found less frequently

in the adenomas group, so much so that the Usp sequence results for this group was close to

showing a significant downward difference (0.07) when compared to the healthy individuals. In

comparison, when evaluating the large and small adenoma groups individually (Table S2), no

statistically significant differences were obtained, including those pertaining to the Usp sequence

(P-value = 0.10 and 0.44 for small and large adenoma, respectively).
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After using the RStudio program to find the specific amount of hits each patient had for

each gene in their specific cohort (Table S3), the average number of hits between all the patients

of a cohort for each specific gene was calculated. Furthermore, the standard deviation, median,

mode, minimum, and maximum values between these patients were also calculated to better

observe how the hit results were distributed (Tables 2.1, A-J). In many cases, when comparing

the average hit values with the minimum, median, and maximum values for each gene in each

cohort, it was noticeable that there were some outliers present that increased the average value

obtained. Additional analysis was performed without considering these outliers (Table S4), but

the general results did not change.
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Table 2.1. Presence and frequency of Hcp isoforms and T6SS- related genes in the selected

metagenomic databases cohorts, i.e., Healthy, Adenomas, and CRC

A. AMmurB Gene

 Cohort Total
Hits

Mean Hits
± σ Positives Frequency %

(P-value) Minimum Median Maximum Mode

Healthy 168 8 ± 10 21 34 1 5 45 1

Adenoma
s 132 8 ± 7 16 38 (0.83) 1 6 28 7

Cancer 367 15 ± 26 24 45 (0.26) 1 5 123 2

B. ECmurB Gene

 Cohort Total
Hits

Mean Hits
± σ Positives Frequency %

(P-value) Minimum Median Maximum Mode

Healthy 243 12 ± 16 21 34 1 5 69 1

Adenoma
s 90 6 ± 8 14 33 (1.00) 1 4 33 5

Cancer 386 18 ± 29 21 40 (0.70) 2 7 102 4

C. EFmurB Gene

 Cohort Total
Hits

Mean Hits
± σ Positives Frequency %

(P-value) Minimum Median Maximum Mode
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Healthy 22 3 ± 3 7 11 1 3 10 1

Adenoma
s 21 5 ± 4 4 10 (1.00) 2 4 12 -

Cancer 17 4 ± 3 4 8 (0.54) 1 4 8 -

D. Hcp Gene

 Cohort Total
Hits

Mean Hits
± σ Positives Frequency %

(P-value) Minimum Median Maximum Mode

Healthy 66 7 ± 8 9 15 2 4 23 2

Adenoma
s 35 9 ± 11 4 10 (0.55) 2 4 26 4

Cancer 46 7 ± 5 7 13 (1.00) 2 4 13 3

E. Hcp-1 Gene

 Cohort Total
Hits

Mean Hits
± σ Positives Frequency %

(P-value) Minimum Median Maximum Mode

Healthy 59 8 ± 13 7 11 1 2 36 2

Adenoma
s 8 4 ± 3 2 5 (0.30) 2 4 6 -

Cancer 90 11 ± 13 8 15 (0.59) 1 6 39 3

F. Hcp-2 Gene

 Cohort Total
Hits

Mean Hits
± σ Positives Frequency %

(P-value) Minimum Median Maximum Mode

Healthy 38 8 ± 11 5 8 2 3 27 -

Adenoma
s 16 3 ± 2 5 12 (0.74) 1 3 6 -

Cancer 93 16 ± 18 6 11 (0.75) 3 5 41 3

G. Hcp-3 Gene

 Cohort Total
Hits

Mean Hits
± σ Positives Frequency %

(P-value) Minimum Median Maximum Mode
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Healthy 80 6 ± 5 14 23 1 3 17 3

Adenoma
s 8 3 ± 1 3 7 (0.06) 2 3 4 -

Cancer 36 4 ± 3 9 17 (0.49) 1 4 9 2

H. tssK Gene

 Cohort Total
Hits

Mean Hits
± σ Positives Frequency %

(P-value) Minimum Median Maximum Mode

Healthy 29 3 ± 1 11 18 1 3 5 2

Adenoma
s 17 6 ± 4 3 7 (0.15) 1 7 9 -

Cancer 138 14 ± 26 10 19 (1.00) 2 5 86 2

I. Usp Gene

 Cohort Total
Hits

Mean Hits
± σ Positives Frequency %

(P-value) Minimum Median Maximum Mode

Healthy 88 8 ± 8 11 18 2 5 24 3

Adenoma
s 36 18 ± 20 2 5 (0.07) 4 18 32 -

Cancer 68 6 ± 5 11 21 (0.81) 2 4 18 4

J. VgrG1 Gene

 Cohort Total
Hits

Mean Hits
± σ Positives Frequency %

(P-value) Minimum Median Maximum Mode

Healthy 274 20 ± 40 14 23 1 7 152 1

Adenoma
s 154 9 ± 10 18 43 (0.05) 1 3 30 3

Cancer 489 33 ± 62 15 28 (0.53) 1 6 224 1

Table 2.1. The table is divided into the three cohorts (healthy, adenomas and cancer). The columns
present the total hits, average number of hits with the standard deviation (σ), positive patients, frequency
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percentage with the corresponding P-value*, minimum, median, maximum value, and mode found for
each cohort. The adenomas cohort results are obtained by grouping the small adenoma and large adenoma
cohort results. *P-values obtained using Fisher’s Exact Test when comparing the Adenomas and Cancer
positive patients’ frequencies to the ones from the Healthy cohort. P-values are statistically significant
when P < 0.05. Statistically significant values are placed in bold.

Using the values from each “Total Hits” column from Tables 2.1 A-J, the gene hit results

for each cohort were graphed to observe their distribution among each diagnostic group (Figure

2.1). The cancer cohort displayed a higher gene hit total for most genes of interest (AMmurB,

ECmurB, Hcp-1, Hcp-2, tssk, and vgrG1), while the adenomas cohort always had the lowest

total in each category.
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Figure 2.1
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Figure 2.1. Hits per gene of interest among positive patients from Healthy, Adenoma and CRC
metagenomic databases. In the preceding graph, the y-axis corresponds to the number of total hits found
for each gene in the three separate cohorts and the x-axis presents each gene in question. As presented in
the legend, the blue line is representative of the hits obtained by the healthy controls, the green line
corresponds to those of the adenomas group, and the grey line pertains to the hits from the cancer patients.

Furthermore, utilizing the frequency percentage values presented in Table 1.1, a clustered

column graph that plotted the frequency values obtained for each gene in each cohort was

generated (Figure 2.2). Like in Figure 2.1, the cancer cohort usually possessed the highest

frequency values (AMmurB, ECMurB, Hcp-1, tssk, and Usp). Contrary to Figure 2.1, the

adenomas group showed the highest frequency value for the Hcp-2 and vgrG1 genes.
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Figure 2.2
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Figure 2.2. Frequency of positive patients among genes of interest from Healthy, Adenoma and CRC
metagenomic databases. In this second graph, the y-axis presents the frequency percentage values
calculated by dividing the number of positive patients per gene per cohort by each cohort’s total number
of patients (N). The y-axis presents each gene in question. Once more, the blue bars correspond to of the
frequency percentages from the healthy cohort, the green bars represent the percentages of the adenomas
cohort, and the grey bars depict those from the CRC cohort.

As an additional step in the study, the hits obtained for the Hcp domain from Usp and the

Usp sequence without the Hcp domain used in the study were individually aligned against the

complete Usp sequence using the NCBI BLAST website. Six alignment graphs were generated:

one for the Hcp domain sequence and one for the Hcp-less Usp sequence within each of the three
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cohorts (Figure 2.3). When comparing the six graphs, it is evident that each sequence had

conserved regions within the complete Usp sequence. Additionally, the graphs included a legend

corresponding to the alignment scores of each sequence hit.

Figure 2.3

A.
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B.

C.

Figure 2.3. NCBI BLAST alignment graphs for Hcp and Usp sequences in the Healthy (A), Adenomas
(B), and CRC (C) cohorts. In these six figures, the Hcp and Usp hit sequences obtained from the project
(Hcp=145 & Usp= 185 for Healthy; Hcp=74 & Usp=87 for Adenomas; Hcp=109 & Usp= 149 for CRC)
were blasted against the complete Usp sequence to observe how these were arranged.

2.4 Discussion
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In recent years, much research has been conducted on the involvement of the gut

microbiota in diseases. This line of work has been expanded by the growth and reach of deep

sequencing or next-generation sequencing platforms, which has generated mounds of useful data.

While many efforts have focused on the generation of sequence data, fewer efforts have

attempted to derive plausible hypotheses or mechanisms that explain how the microbiota

modulates host tissue to result in disease. In this project, we used the metagenomic data provided

by the European Nucleotide Archive (https://www.ebi.ac.uk/ena) database (Accession No.

PRJEB12449) to study the frequency of several genes in three different cohorts (CRC,

adenomas, and healthy controls). To study these, we made use of the Basic Alignment Search

Tool (BLAST) and RStudio programs, which were essential in this study and serve as clear

examples of how these tools contribute to the in-depth investigation of metagenomic sequences

in disease-specific cohorts. The procedure we utilized to obtain, filter, and analyze the data,

which included a constant verification of the procedure, ensured validity in the results. All the

metagenomic data from each of the cohorts was processed and analyzed using a computational

pathway created using the BLAST and RStudio platforms.

While there are many E. coli genes that could have been included, we focused on a

specific subset of gene sequences (Supplementary Table S1). Most of these were previously

found to possess genotoxic or pro-inflammatory behavior (Gomez-Moreno, et al., 2014;

Roche-Lima, et al., 2018) but we also included new sequences, such as vgrG1 and the different

hcp sequences. The ECmurB from Escherichia coli and EFmurB from Enterococcus faecalis

gene sequences were included as controls, since both are housekeeping genes. The AMmurB

gene sequence from Akkermansia muciniphila was also included since it has been previously
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linked to CRC and other inflammatory conditions (Weir, et al., 2013). As expected, in Table 1,

the AMmurB gene had most total hits and greatest frequency in the cancer cohort, but there was

no statistical significance found (P-value = 0.26). The frequency in the healthy and adenomas

cohorts for this gene was very similar. This difference explains why the resulting P-value for the

CRC cohort was more significant than that of the adenomas cohort, though neither value was

statistically significant.

In terms of the three individual isoforms of Hcp from the PCN033 strain, that is, hcp-1,

hcp-2, and hcp-3, the healthy and CRC cohorts presented similar frequencies for each individual

sequence, though there was not a uniform difference between the two groups. That is, for hcp-3,

the healthy cohort had a greater total amount of hits and a higher frequency while, for hcp-1 and

hcp-2, the opposite occurred. In terms of the adenomas cohort, the results showed a much lower

number of hits for all the hcp sequences when compared to the other two cohorts but showed a

slightly higher frequency for the hcp-2 gene when compared to the CRC cohort. These

tendencies can possibly be explained by examining the known functions of each Hcp. For

example, though all three individual Hcps aid in colonization, the Hcp-1 effector induces

apoptosis and the release of cytokine effectors into the extracellular environment (Zhou, et al.,

2012), the Hcp-2 effector is involved in inter-bacterial competition, and Hcp-3 primarily

functions in the interaction with eukaryotic host cells (Peng, et al., 2016). Given how apoptosis is

intrinsically related to cancer it is used to restraint the out-of-control cell division in these

mutated cells (Wong, 2011), this could be a possible explanation as to why Hcp-1 has more gene

hits and a higher frequency in the CRC cohort. Also, the higher frequency of the Hcp-2 gene in

both the adenomas and CRC patients could be explained by the fact that both conditions have
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been directly associated to different bacterial factors which contribute to the inflammation. This

behavior would explain a higher amount of bacterial competition and, thus, more Hcp-2.

When studying the results for the hcp sequence embedded in Usp, we focused on how

these matched up with those of the C-terminal portion of Usp, that is, Usp without its Hcp

domain. We expected that, since these separate sequences were supposed to add up to one

functional protein, we would have obtained matching results across samples. However, in the

healthy and CRC cohorts, we observed a greater amount of hits and a higher frequency for Usp

when compared to Hcp. These results are interesting since, given the fact that the hcp domain is

shared between different effector proteins (Ma, et al, 2017), one would expect a higher presence

of Hcp, which is evidently not the case in the healthy and CRC groups. When we visualized the

individual hits of both the Hcp domain and the C-terminal Usp sequence, we observed that the

hits were distributed evenly throughout the complete HCP-Usp gene sequence (Figure 2.3).

Thus, the difference in the number of hits at the Hcp (N-terminal portion) and Usp (C-terminal

portion) could be explained by the fact that the Usp sequence is longer than that of the Hcp

domain. That is, the S-pyocin domain and the Nuclease domain in Usp’s C-terminal is 346 amino

acids long, while Usp’s N-terminal Hcp domain has 247 amino acids. Thus, since there is a

higher probability for hits in the Usp sequence, it is possible that it is being detected more easily

than the Hcp portion. However, the adenomas cohort presented the opposite case since the Hcp

domain sequence registered higher frequency values than those obtained for Usp. Thus, this

could suggest that the environment present in adenoma patients could allow the presence of

different types of effector proteins, all of which would contain a similar Hcp domain, in response

to the inflammation and bacterial competition levels found in this condition.
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Among all the genes studied, the only one whose difference showed a statistically

significant P-value, was the vgrG1 sequence in the adenomas group (P-value = 0.05 by Fisher’s

exact test). Just as with the different Hcp sequences, there are numerous vgrG sequences that

have varying functions. Apart from the known structural functions these proteins carry out in the

Type VI Secretion System (T6SS), it has been shown that the VgrG1 protein found in Vibrio

Cholerae’s T6SS, covalently cross-links actin and results in the formation of toxic actin

oligomers that lead to cell rounding (Durand, et al, 2012). VgrG sequences within the T6SS also

display a variety of functions. In the T6SS present in V. cholerae, it has been found that the

VgrG-1 is different than other VgrG proteins because its effector domain has been translocated

into the infected eukaryotic cells’ cytosol along with an additional actin cross-linking domain

(ACD) at the C-terminus (Dutta, et al., 2019). Thus, the VgrG protein family’s functional

variability could possibly explain the difference in total number of hits and the frequencies in the

cohorts. It could also be possible that the inflammatory environments surrounding the host cells

can influence the selection for the gene or specific strains around this tissue. That is, it is possible

that in the adenomas group, where the inflammation present is not as severe as that of a cancer

patient, there is some selective pressure to increase the proportion of VgrG. Given how there is

little to no information on this specific subject, it is crucial to study this phenomenon in order to

arrive at conclusions that are more certain, thus potentially leading to a better understanding of

how the T6SS and its components effect conditions such as the ones studied.
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Chapter 3. Develop a computational platform that can facilitate the study of specific gene

sequences from gut microbiota in disease-specific datasets.
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3.1 Introduction

Analyzing the prevalence or frequency of genotoxic and/ or proinflammatory genes from

gut bacteria among the metagenomic databases is currently a very challenging process. Despite

the importance of analyzing such large datasets, there are few “user-friendly” tools for parsing

the information and generating new hypotheses. Current protocols involve a computational

manual and code-intensive workflow that involves downloading large datasets into local servers

and running BLAST routines for sequence comparison followed by Rstudio or Python scripts

that require a level of programming knowledge above that of your typical biomedical scientist.

Clearly there is a need for an automated workflow that can be used to search for specific

sequences in disease-specific datasets. In this aim, we offer the stepwise protocol as a sort of

“standard operating procedure” for such sequence searches. To the best of our knowledge, there

are no computational tools, web-based or local, to easily perform the kind of analysis presented

in this document.

As a test case, we have chosen four additional genotoxin-encoding genes; clbB, cnf-1,

gelE, and tcpC, for analysis using the computational pathway created. These genes were chosen
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due to their specific functions and roles evidenced in previous studies (Gomez-Moreno, et al.,

2014). For example, clbB is highly associated with CRC as it is a non-ribosomal peptide that is

part of the colibactin polyketide synthase multienzyme (pks island), which induces mammalian

chromosome instability in mouse and human colon cells in culture and contributes to the

production of colibactin (Gomez-Moreno, et al., 2014). Additionally, cytotoxic necrotizing

factor-1, or cnf-1, is a bacterial toxin that is produced by some pathogenic E. coli strains and has

been widely associated with cancer proliferation previously since it’s an activator of oncogenic

Rho GTPases (Gomez-Moreno, et al., 2014). Moreover, gelE is a metalloprotease that

hydrolyzes insoluble hydrophobic substances and has shown to act as a virulence factor and

induces inflammation (Gomez-Moreno, et al., 2014). Finally, tcpC is a bacterial toxin that

modulates the host’s immune response and, therefore, is associated to inflammation. We chose to

analyze these genes using the exact number and order of steps taken for the analysis of Usp and

Hcp, to validate our protocol as the seed for an eventual computational pathway for the search of

any microbial gene in disease-specific cohorts.

3.2 Methods

The same computational steps applied in Chapter 2 (2.2.1-2.2.3) were employed for the

additional set of genes, specifically clbB (AM229678.1), cnf-1 (U42629.1), gelE (D85393.1),

and tcpC (GQ902994.1), in order to validate the metagenomic pathway that will seed a

computational application or platform for gene analysis. Thus, the procedure conducted for both

chapters is presented in the following BLAST and RStudio scripts which, taken together, form

the computational procedure for the project.

3.2.1 BLAST analysis
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The following set of commands detail the initial steps necessary to download the

sequence data and to obtain the unprocessed hit results. The healthy cohort was used as the

example presented but all cohort replicas were processed in the following manner. Briefly, using

the Linux command line, a script was written to download the sequences which were available in

the Fastq format. The files were then converted from the Fastq format to the Fasta format, which

presents the sequences in a more processable form. Once the data was cleaned and the replica

groups were merged, the number of times that our genes of interest were found within these

resulting datasets was quantified using a command line version of BLAST. Below is the stepwise

procedure employed:

Step 1: Download fastq files for each cohort using python script

{
import os

file = open('PRJEB-----.txt', 'r')
for line in file:
print line

os.system('wget -r '+line)
file.close()

}

Step 2: Group sample fastq files into a single fastq file for each replica to create the

database

cat *.fastq > Controls_PRJEB6070merged-1.fastq

cat *.fastq > Controls_PRJEB6070merged-2.fastq

Step 3: Convert files from fastq to fasta format

cat Controls_PRJEB6070merged-1.fastq | paste - - - - | sed 's/^@/>/g'| cut
-f1-2 | tr '\t' '\n' > Controls_PRJEB6070merged-1.fasta

cat Controls_PRJEB6070merged-2.fastq | paste - - - - | sed 's/^@/>/g'| cut
-f1-2 | tr '\t' '\n' > Controls_PRJEB6070merged-2.fasta
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Step 4: Use stand-alone NCBI BLAST software ncbi-blast-2.6.0+ to create a BLAST

database for each replica within each cohort

makeblastdb -in Controls_PRJEB6070merged-1.fasta -input_type fasta -dbtype
nucl -parse_seqids -out Controls_F-Population-1

makeblastdb -in Controls_PRJEB6070merged-2.fasta -input_type fasta -dbtype
nucl -parse_seqids -out Controls_F-Population-2

Step 5: Use stand-alone NCBI BLAST software ncbi-blast-2.6.0+ to run BLAST

blastn -db Controls_F-Population-1 -query ProInflammatorygenes.fasta -out
Controls_F-Population-1-blastn-output.csv -outfmt "6 std qcovs qseqid sseqid
slen qstart qend length mismatch gapopen gaps sseq"

blastn -db Controls_F-Population-2 -query ProInflammatorygenes.fasta -out
Controls_F-Population-2-blastn-output.csv -outfmt "6 std qcovs qseqid sseqid
slen qstart qend length mismatch gapopen gaps sseq"

3.2.2 RStudio analysis

The following R Markdown Script details the steps taken throughout the generated

pathway in order to obtain the study results. The following example pertains to the Healthy

cohort, but the same pathway detailed was applied to all cohorts.

Step 6: Choose Working Directory

The first step is to indicate the location of the data you will be utilizing using the “setwd”
function.

setwd("~/Documents/GabrielasProject2020/CNR_&_Healthy_outputs_04-23-2021/Outp
uts_PRJEB6070")

Step 7: Call the data.table packages required

The following packages were used to generate the project's results.

if(!require(data.table)){
install.packages("data.table")
library(data.table)

}
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if(!require(stringi)){
install.packages("stringi")
library(stringi)

}

if(!require(dplyr)){
install.packages("dplyr")
library(dplyr)

}

Step 8: Open the tsv files of interest

The two .tsv files, one of each replica, generated during the BLAST analysis for each cohort
were inputted with the “read.table” function and saved within the R script using the arrow
symbol. These individual files contained the patients who displayed hits for the genes evaluated.

Healthy_blastn_1 <- read.table("Controls_1_MergedPIGenes_1-29-2021.tsv",
header = F, sep = "\t")
Healthy_blastn_2 <- read.table("Controls_2_MergedPIGenes_1-29-2021.tsv",
header = F, sep = "\t")

Step 9: Load metadata file

The metadata file, which contains the clinical data for all the patients present in the metagenomic
data used, was called for with the “read.csv” function. The column originally called "Run_s" was
renamed "run_accession" to facilitate future data processing.

metadata <- read.csv("Clinical_SRAPRJEB6070_02-5-2021.csv", header = T, sep =
",")
names(metadata)[names(metadata) == "Run_s"] <- "run_accession"

Step 10: Filter metadata for diagnosis of interest

In order to only analyze the healthy individuals, the metadata file was filtered using the
"Diagnosis_s" column. Additionally, to remove potential duplicates, only patients whose
"LibraryLayout_s" equaled "SINGLE" were used.

metadata_Healthy <- metadata[ which(metadata$Diagnosis_s=="Normal"), ]
metadata_Healthy <- metadata_Healthy[
which(metadata_Healthy$LibraryLayout_s=="SINGLE"), ]

Step 11: Process the accession numbers

To facilitate the future processing and analysis of the patients' hit information, their run accession
numbers presented per hits in each replica groups were simplified so they would only identify
the patient instead of the specific hit.

Healthy_blastn_1$V2 <- sub('\\..*', '', Healthy_blastn_1$V2)
Healthy_blastn_2$V2 <- sub('\\..*', '', Healthy_blastn_2$V2)
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Step 12: Convert replica data frames to tables
dt_1 <- data.table(Healthy_blastn_1)
dt_2 <- data.table(Healthy_blastn_2)

Step 13: Rename data table columns

The columns were renamed to resemble the default nomenclature of the BLAST program. The
only exception was the “query coverage” column.

# For first replica group
names(dt_1)[names(dt_1)=="V1"] <- "queryseqid"
names(dt_1)[names(dt_1)=="V2"] <- "run_accession"
names(dt_1)[names(dt_1)=="V3"] <- "qident"
names(dt_1)[names(dt_1)=="V4"] <- "length"
names(dt_1)[names(dt_1)=="V5"] <- "mismatch"
names(dt_1)[names(dt_1)=="V6"] <- "gapopen"
names(dt_1)[names(dt_1)=="V7"] <- "qstart"
names(dt_1)[names(dt_1)=="V8"] <- "qend"
names(dt_1)[names(dt_1)=="V9"] <- "sstart"
names(dt_1)[names(dt_1)=="V10"] <- "send"
names(dt_1)[names(dt_1)=="V11"] <- "evalue"
names(dt_1)[names(dt_1)=="V12"] <- "bitscore"
names(dt_1)[names(dt_1)=="V13"] <- "querycover"

# For second replica group
names(dt_2)[names(dt_2)=="V1"] <- "queryseqid"
names(dt_2)[names(dt_2)=="V2"] <- "run_accession"
names(dt_2)[names(dt_2)=="V3"] <- "qident"
names(dt_2)[names(dt_2)=="V4"] <- "length"
names(dt_2)[names(dt_2)=="V5"] <- "mismatch"
names(dt_2)[names(dt_2)=="V6"] <- "gapopen"
names(dt_2)[names(dt_2)=="V7"] <- "qstart"
names(dt_2)[names(dt_2)=="V8"] <- "qend"
names(dt_2)[names(dt_2)=="V9"] <- "sstart"
names(dt_2)[names(dt_2)=="V10"] <- "send"
names(dt_2)[names(dt_2)=="V11"] <- "evalue"
names(dt_2)[names(dt_2)=="V12"] <- "bitscore"
names(dt_2)[names(dt_2)=="V13"] <- "querycover"

Step 14: Rename data table rows

The rows for the "queryseqid" column in each replica table were renamed to represent the gene
in question and, afterwards, the column name was changed to "Gene_Name".

#For first replica group
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="gi|112292700:41762-51382"]
<- "clbB"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="gi|112292700:41762-51382"]
<- "clbN"
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levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="gb|U42629.1|ECU42629:858-39
02"] <- "cnf-1"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="gi|1339878|dbj|D85393.1|ENE
GE1E"] <- "gelE"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="murB_E_coli_Baerga_gi|55650
3834:4172057-4173085"] <- "ECmurB"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="murB_E_faecalis"] <-
"EFmurB"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="murB_Akkermansia_muciniphil
a"] <- "AMmurB"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="gi|308387403|gb|GQ902994.1|
"] <- "tcpC"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="gi|7416047|dbj|AB027193.1|"
] <- "USP"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="gi|37547387|gb|AY128544.1|"
] <- "cif"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="CP043181.1:3517124-3518905"
] <- "HCP"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="CP043181.1:3647520-3648866"
] <- "tssK"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="CP006632.1:246100-246582"]
<- "HCP-1"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="CP006632.1:267403-267921"]
<- "HCP-2"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="CP006632.1:4258749-4259897"
] <- "HCP-3"
levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="CP006632.1:268131-269756"]
<- "vgrG1"

levels(dt_1$queryseqid)[levels(dt_1$queryseqid)=="queryseqid"] <-
"Gene_Name"

# For second replica group
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="gi|112292700:41762-51382"]
<- "clbB"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="gi|112292700:41762-51382"]
<- "clbN"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="gb|U42629.1|ECU42629:858-39
02"] <- "cnf-1"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="gi|1339878|dbj|D85393.1|ENE
GE1E"] <- "gelE"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="murB_E_coli_Baerga_gi|55650
3834:4172057-4173085"] <- "ECmurB"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="murB_E_faecalis"] <-
"EFmurB"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="murB_Akkermansia_muciniphil
a"] <- "AMmurB"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="gi|308387403|gb|GQ902994.1|
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"] <- "tcpC"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="gi|7416047|dbj|AB027193.1|"
] <- "USP"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="gi|37547387|gb|AY128544.1|"
] <- "cif"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="CP043181.1:3517124-3518905"
] <- "HCP"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="CP043181.1:3647520-3648866"
] <- "tssK"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="CP006632.1:246100-246582"]
<- "HCP-1"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="CP006632.1:267403-267921"]
<- "HCP-2"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="CP006632.1:4258749-4259897"
] <- "HCP-3"
levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="CP006632.1:268131-269756"]
<- "vgrG1"

levels(dt_2$queryseqid)[levels(dt_2$queryseqid)=="queryseqid"] <-
"Gene_Name"

Step 15: Merge individual replica tables with metadata

Using the "run_accession" column as the common column, each replica table (dt_1 and dt_2)
was merged with the metadata table.

samplehits_1 = merge(dt_1, metadata, by="run_accession")
samplehits_2 = merge(dt_2, metadata, by="run_accession")

Step 16: Number of hits per gene per patient in each replica

After merging the replica tables with the metadata information, the "queryseqid" and
"BioSample_s" columns present in the two sample hits tables were used to group and count the
number of times each gene was repeated among each of the patients evaluated in each replica.
This gave the total number of hits accounted for each gene evaluated in each of patients present
in the replica groups. The resulting two tables presented the gene in question, the patient or
sample, and the number of hits. Because of this, these three columns were renamed accordingly.

# For first replica group
uniqsampleswhits_1 <- summarise(group_by(samplehits_1, queryseqid,
BioSample_s),length(queryseqid))

colnames(uniqsampleswhits_1)[1] <- "Gene"
colnames(uniqsampleswhits_1)[2] <- "Sample"
colnames(uniqsampleswhits_1)[3] <- "Hits"

# For second replica group

46



uniqsampleswhits_2 <- summarise(group_by(samplehits_2, queryseqid,
BioSample_s),length(queryseqid))

colnames(uniqsampleswhits_2)[1] <- "Gene"
colnames(uniqsampleswhits_2)[2] <- "Sample"
colnames(uniqsampleswhits_2)[3] <- "Hits"

Step 17: Total hits per patient per gene

The two separate tables generated in the previous step were merged using the three common
columns. This step ensured that the resulting patients had at least one hit per gene and thus meet
our definition of a "hit". An additional column was added where the hit values for each gene for
each patient in each replica were averaged. Thus, this column presented the total number of hits
that each patient had per gene.

# Merging the two replica tables
merged_gene_hits <- as.data.frame(merge(uniqsampleswhits_1,
uniqsampleswhits_2, queryseqid, by.x = c("Sample", "Gene"), by.y =
c("Sample", "Gene"), sort = TRUE))
head(merged_gene_hits)

##  Sample  Gene Hits.x Hits.y
## 1 SAMEA2466887 AMmurB  22  31
## 2 SAMEA2466887 ECmurB  2  3
## 3 SAMEA2466890 AMmurB  3  6
## 4 SAMEA2466891 AMmurB  7  13
## 5 SAMEA2466891 ECmurB  67  71
## 6 SAMEA2466891  HCP  6  2

# Mean hits column
Mean_hits <-data.frame(Sample=merged_gene_hits[,1:4],
Mean_Hits=rowMeans(merged_gene_hits[,c("Hits.x", "Hits.y")], na.rm=TRUE))
colnames(Mean_hits)[3] <- "Hits_replica1"
colnames(Mean_hits)[4] <- "Hits_replica2"
head(Mean_hits)

##  Sample.Sample Sample.Gene Hits_replica1 Hits_replica2 Mean_Hits
## 1  SAMEA2466887  AMmurB  22  31  26.5
## 2  SAMEA2466887  ECmurB  2  3  2.5
## 3  SAMEA2466890  AMmurB  3  6  4.5
## 4  SAMEA2466891  AMmurB  7  13  10.0
## 5  SAMEA2466891  ECmurB  67  71  69.0
## 6  SAMEA2466891  HCP  6  2  4.0

Step 18: Total hits per gene result

The "aggregate" function was applied to the "Sample.Gene" column in the Mean_Hits table
created in the last step. This function resulted in the total number of hits that each individual
gene had in the filtered pool of healthy individuals.
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TotalHitsPerGene <- aggregate(cbind(Mean_Hits) ~ Sample.Gene, data=Mean_hits,
FUN=sum)
head(TotalHitsPerGene)

##  Sample.Gene Mean_Hits
## 1  HCP-1  59.0
## 2  HCP-2  38.0
## 3  vgrG1  274.0
## 4  HCP-3  79.5
## 5  HCP  66.0
## 6  tssK  29.0

Step 19: Total positives per gene result

The "aggregate" function was reapplied to the "Sample.Gene" column in the Mean_Hits table,
but instead of using the "sum" function, "function(x){NROW(x)}" was used to count the number
of times a specific Sample ID, representative of each patient, was repeated in each gene.

Total_Positives <- aggregate(cbind(Mean_Hits) ~ Sample.Gene, data=Mean_hits,
FUN = function(x){NROW(x)})
head(Total_Positives)

##  Sample.Gene Mean_Hits
## 1  HCP-1  7
## 2  HCP-2  5
## 3  vgrG1  14
## 4  HCP-3  14
## 5  HCP  9
## 6  tssK  11

Step 20: Merged table with positives frequency value

The TotalHitsPerGene and Total_Positives tables were merged using the "Sample.Gene" column.
A fourth column with the frequency percentage value for the positives for each gene was added.
These values were obtained by dividing the values from the "positives" column by the total
number of patients present in the healthy cohort.

# Merging total hits per gene and total positives per gene tables
Positives_with_hits <- merge(TotalHitsPerGene, Total_Positives, Sample.Gene,
by.x = "Sample.Gene", by.y = "Sample.Gene", sort = TRUE)

# Rename columns
colnames(Positives_with_hits)[1] <- "Gene"
colnames(Positives_with_hits)[2] <- "Total Hits"
colnames(Positives_with_hits)[3] <- "Positives"

# Frequency of positives per gene
Positives_with_hits$Frequency <-
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as.numeric(as.character(Positives_with_hits$Positives))/ 61 *100
head(Positives_with_hits)

##  Gene Total Hits Positives Frequency
## 1 AMmurB  168.0  21 34.426230
## 2  clbB  6.0  3  4.918033
## 3  cnf-1  158.0  8 13.114754
## 4 ECmurB  242.5  21 34.426230
## 5 EFmurB  22.0  7 11.475410
## 6  gelE  23.0  4  6.557377

Step 21: Fisher Test Example

The following section presents one of the Fisher Tests realized in the study. The following
example corresponds to the comparison between the adenomas cohort (A) and the healthy
individuals (H). It is important to note that the same procedure was employed for the remaining
groups of the study.

# Import Healthy versus Adenomas file
Healthy_Adenomas <-
read.csv("/home/aroche/Documents/GabrielasProject2020/Data
Visualization/Healthy_vs_L&S.csv", header = T, sep = ",")

# Apply fisher test function for row values
row.names(Healthy_Adenomas) <- Healthy_Adenomas $Gene.Name
Healthy_Adenomas[1] <- NULL

row_fisher <- function(row, alt = 'two.sided', cnf = 0.95) {
f <- fisher.test(matrix(row, nrow = 2), alternative = alt, conf.level =

cnf)
return(c(row,

p_val = f$p.value,
or = f$estimate[[1]],
or_ll = f$conf.int[1],
or_ul = f$conf.int[2]))

}

Healthy_Adenomas_Fisher <- data.frame(t(apply(Healthy_Adenomas, 1,
row_fisher)))
head(Healthy_Adenomas_Fisher)

##  Mean.Positives (H) Mean.Negatives (H)  Mean.Positives (A)
## AMmurB  19  42  16
## ECmurB  20  41  13
## EFmurB  6  55  4

Mean.Negatives (A)  p_val  or  or_ll  or_ul
## AMmurB  26 0.5279932 0.7373602 0.2979267 1.829111
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## ECmurB  29 1.0000000 1.0872701 0.4329705 2.789415
## EFmurB  38 1.0000000 1.0360099 0.2277628 5.340826
Step 22: Saving a table example

Any time a table is to be saved to the computer's files, the "write.table" function must be
employed.

write.table(Healthy_Adenomas_Fisher, file = "Healthy_Adenomas_Fisher.csv",
sep = ",", col.names = TRUE,

qmethod = "double")

3.3 Results

Utilizing the metagenomic path generated for this aim, the results pertaining to the genes

evaluated in Chapter 3, that is, clbB, cnf-1, gelE, and tcpC, were obtained. Firstly, the total

number of hits, positive patients, and corresponding frequency values found for each gene

among each individual cohort was tabulated (Table 3.1). Furthermore, the standard deviation,

minimum value, median, maximum value and mode between these patients were also found to

observe the distribution of said hit results. As in Chapter 2, the P-values pertaining to the

difference between the positive patient frequency values in the adenoma and CRC cohorts

compared to those of the healthy individuals was also found and included. There were no

statistically significant values within the genes studied.
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Table 3.1. Presence and frequency of proinflammatory and genotoxin genes in the selected

metagenomic databases cohorts, i.e., Healthy, Adenomas, and CRC

Healthy Cohort
Gene clbB cnf-1 gelE tcpC

Total Hits 7 160 27 25
Mean Hits ± σ 2 ± 1 20 ± 25 6 ± 6 7 ± 6

Positives 4 10 7 6
Frequency % 7 16 11 10

Min 2 1 2 2
Median 2 7 3 7

Max 3 70 15 14
Mode 2 - - -

51



Adenomas Cohort
Gene clbB cnf-1 gelE tcpC

Total Hits 0 7 24 0
Mean Hits ± σ - 4 ± 0 5 ± 4 -

Positives 0 2 8 0
Frequency %

(P-value)a 0 (0.14) 5 (0.12) 19 (0.39) 0 (0.08)

Min - 4 2 -
Median - 4 4 -

Max - 4 10 -
Mode - - - -

Cancer Cohort
Gene clbB cnf-1 gelE tcpC

Total Hits 5 67 32 12
Mean Hits ± σ 1 ± 0 13 ± 14 6 ± 5 2 ± 1

Positives 4 7 7 7
Frequency %

(P-value)a 8 (1.00) 13 (0.79) 13 (0.78) 13 (0.77)

Min 1 1 1 1
Median 1 5 5 2

Max 2 29 14 3
Mode 1 - - 1

Table 3.1. The table is divided into the three cohorts (healthy, adenomas and cancer). The column
categories are the corresponding genes (clbB, cnf-1, gelE, and tcpC), and the row categories present the
average number of hits with the standard deviation (σ), minimum value, median, maximum value, and
mode found for each cohort. The adenomas cohort results are obtained by grouping the small adenoma
and large adenoma cohort results. a P-values obtained using Fisher’s Exact Test when comparing the
Adenomas and Cancer positive patients to the ones from the Healthy cohort. P-values are statistically
significant when P < 0.05. Statistically significant values are placed in bold.
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3.4 Discussion

Despite the importance of metagenomic sequence repositories for the analysis of

microbial genes in diseases, there is currently no available platform to facilitate the navigation

through such complex data files to obtain information that could lead to novel hypotheses. The

search through these data repositories continues to be the exclusive province of data scientists

and programmers that can easily derive home-made scripts for the automation of searches and
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for the analysis of search results. Still unavailable is a simple platform that can easily navigate

the data repositories to infer the involvement of specific microbial genes in disease. In this

project, we have laid down the foundation for such a method by proposing a series of 22

commands that result in the search for specific genes in these databases. In this work, we focused

on a specific subset of bacterial gene sequences (Table S1). Our results showed that no

statistically significant difference was found between these additional genes in any of the cohorts

when compared to the healthy individuals (Table 3.1). As seen in the table, not all the genes were

present in all cohorts. Specifically, no clbB or tcpC was found in the Adenomas cohort.

This general lack of differences with statistical significance was expected. The

microbiome is a complex and changing collection of genes and sequences in which individual

genes are naturally dilute. For instance, experimentally it has been observed that colibactin genes

(in this case exemplified by gene clbB), are only present in roughly 20% of healthy individuals.

Thus, in a cohort of 50, we would only expect 10 individuals with clbB, if the shotgun approach

was exhaustive with 100% coverage of the microbiome. However, we know that most E. coli

isolates do not harbor these genotoxin-encoding genes and most individuals test negative for

these genes by PCR (Shimpoh, et al., 2017). Another limitation of these studies is the lack of

knowledge of the “true” health status of individuals in the healthy cohort. There is no

information on the complete health status and medical history of the individuals evaluated, which

could potentially affect the study. That is, we do not know how healthy the “healthy” group was

or if any patient had other conditions that could have affected the results. This lack of knowledge

on the true health status of individuals in the cohort, could have resulted in the presence of

outliers in the data, i.e., individuals with an abnormally high number of gene hits in any cohort.
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In a later analysis step, we removed outliers defined statistically as values outside of two

standard deviations from the mean. The results with outlier values removed is shown in Table

S4. Clearly the removal of these outliers did not make a difference from the comparison of these

values vs. our original results. That is, even though the values of most total hits, mean hits, their

respective standard deviations, and positive frequency percentages decreased, it was quite

uniform among all cohorts, which led us to believe that the P-values would not change greatly.

Furthermore, the vgrG1 group from the adenomas cohort was not affected since no outliers were

found, thus further validating our original results.

Interestingly, by obtaining the amount of total hits, the number of positives, and the

corresponding frequency percentage of each of the four genes, we were able to arrive at plausible

results, thus further authenticating a newly established automatable workflow. As was done for

the results reported in Chapter 2, the primary results obtained from our newly applied pathway

were used to find the average value of hits for each gene within a cohort, the minimum and

maximum values, median, mode, and the standard deviation for these values (Table 3.2). This

work was carried out with the datasets resulting from a single study that analyzed stool samples

from two populations (Washington DC, and France). However, with new metagenomic data

populating the ever-growing sequence repositories, it will be possible to employ this strategy for

the analysis of microbial genes in a larger and more global scale.
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Chapter 4. Conclusion

Throughout this study we were able to perform an in-depth analysis of the metagenomic

data from the European Nucleotide Archive. By thoroughly processing and analyzing the data

obtained from the alignment of the qualified patients from each cohort with our specific genes of
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interest, we achieved a better understanding of the roles and effects that certain gene sequences

may exert, as well as how these may be susceptible to the environment in which they are found.

Though a positive correlation between the presence of the Hcp sequences and the adenomas and

colorectal cancer was not found, other patterns of interest were viewed. For example, the varied

presence of the four different Hcp sequences within each cohort and how these results compared

to those of vgrG1. Moreover, because of the cautious procedures carried out throughout the

study, we have constructed a reusable pathway that could be used to further study these

sequences or be applied to other studies. Utilizing this metagenomic path, after frequently

validating the process and filtering the data, we were able to obtain numerous hits with small E

values for most of the genes related to the T6SS studied, which had not been done under one

study. Thus, despite there was only one statistically significant difference obtained (vgrG1,

Adenomas cohort), there were noticeable patterns or tendencies present. The most curious of

these was that most of these genes studied reduced their frequency percentage in the Adenomas

group. It was also found that Usp was found with higher frequencies than the Hcp domain alone,

even though this protein domain is shared with numerous effectors (Ma, et al., 2017). Therefore,

we can conclude that these DNases are well represented in these conditions. Related to this, it

was also interesting to see how the Hcp isoforms had different frequencies, which could be

related to their different roles and functions.

Regarding the limitations mentioned in the discussion of the second aim, it is important

to find further ways to validate the study, such as applying Fisher’s Exact Test to the results

obtained after removing the statistical outliers (Table S4). In addition to the limitations faced in

the current project, in order to gain a more reliable outlook on the presence of these specific
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proteins within the disease groups, a study of the protein domains themselves could be

incorporated. That is, by also searching for these amino acid sequences, a fuller understanding of

the distribution of each gene within each cohort could be obtained. Following this framework,

we could further investigate the presence of other emerging bacterial sequences for their

involvement in disease. Future investigations should delve into the role of vgrG in adenomas,

since this sequence was the only one that proved to be statistically different in adenomas vs.

controls in the entire project. It would be interesting to see whether VgrG itself or a VgrG

homolog has any gut-specific function against the host’s cells. Regardless of its many

limitations, we developed a computational pipeline that successfully enabled the study and

search of a select group of genes with the adenomas and colorectal cancer conditions. This

process can be implemented in future studies to better our understanding of genotoxic and

proinflammatory factors in specific diseases.

58



Bibliographical References

Armstrong, G. (2013). Uropathogenic Escherichia coli colicin-like Usp and associated proteins:

Their evolution and role in pathogenesis. The Journal of Infectious Diseases, 208(10),

1539-1541. doi:10.1093/infdis/jit482.

Brennan, C.A. & Garett, W.S. (2016). Gut microbiota, inflammation, and colorectal cancer.

Annu Rev Microbiol, 70, 395–411. doi:10.1146/annurev-micro-102215-095513.

Centers for Disease Control and Prevention. (2021, February 8). What Are the Risk Factors for

Colorectal Cancer? Centers for Disease Control and Prevention.

https://www.cdc.gov/cancer/colorectal/basic_info/risk_factors.htm

Črnigoj, M., Podlesek, Z., Budič, M., & Žgur-Bertok, D. (2014). The Escherichia coli

uropathogenic-specific-protein-associated immunity protein 3 (Imu3) has nucleic acid –

binding activity. BMC Microbiol, 14(16), 1-8. doi:10.1186/1471-2180-14-16.

Durand E, Derrez E, Audoly G, Spinelli S, Ortiz-Lombardia M, Raoult D, Cascales E, &

Cambillau C. (2012). Crystal structure of the VgrG1 actin cross-linking domain of the

Vibrio cholerae type VI secretion system. J Biol Chem, 287(45), 38190-9. doi:

10.1074/jbc.M112.390153.

Dutta, P., Jijumon, A. S., Mazumder, M., Dileep, D., Mukhopadhyay, A. K., Gourinath, S., &

Maiti, S. (2019). Presence of actin binding motif in VgrG-1 toxin of Vibrio cholerae

reveals the molecular mechanism of actin cross-linking. International journal of

biological macromolecules, 133, 775–785.

https://doi.org/10.1016/j.ijbiomac.2019.04.026

59



Gómez-Moreno R, González-Pons M, Soto-Salgado M, Cruz-Correa M, & Baerga-Ortiz A.

(2019) The presence of gut microbial genes encoding bacterial genotoxins or

pro-inflammatory factors in stool samples from individuals with colorectal neoplasia.

Diseases, 7(1),16. doi:10.3390/diseases7010016.

Gómez-Moreno, R., Martínez-Ramírez, R., Roche-Lima, A., Carrasquillo-Carrión, K., Pérez-

Santiago, J., & Baerga-Ortiz, A. (2019). Hotspots of sequence variability in gut

microbial genes encoding pro-inflammatory factors revealed by oligotyping. Frontiers,

10(631), 1-9. doi:10.3389/fgene.2019.00631.

Gomez-Moreno, R., Robledo, I. E., & Baerga-Ortiz, A. (2014). Direct detection and

quantification of bacterial genes associated with inflammation in DNA isolated from

stool. Adv. Microbiol. 4, 1065–1075. doi: 10.4236/aim.2014.415117.

Hersch, S. J., Manera, K., & Dong, T. G. (2020). Defending against the type six secretion

system: Beyond immunity genes. Cell Reports, 33(2), 108259.

doi:10.1016/j.celrep.2020.108259

Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD - Visual Molecular Dynamics. J.

Molec. Graphics 14, 33–38. doi:10.1016/0263-7855(96)00018-5.

Ma, J., Sun, M., Pan, Z., Song, W., Lu, C., & Yao, H. (2018). Three Hcp homologs with

divergent extended loop regions exhibit different functions in avian pathogenic

Escherichia coli. Taylor and Francis Online, 143(1), 1-13.

doi:10.1038/s41426-018-0042-0.

60



Ma, J., Pan, Z., Huang, J., Sun, M., Lu, C., & Yao, H. (2017). The Hcp proteins fused with

diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type

VI secretion systems. Virulence, 8(7), 1189–1202.

https://doi.org/10.1080/21505594.2017.1279374

Martin, H. M., Campbell, B. J., Hart, C. A., Mpofu, C., Nayar, M., Singh, R., et al. (2004).

Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer 1.

Gastroenterology 127, 80–93. doi: 10.1053/j. gastro.2004.03.054

Mougous, J.D., Cuff, M.E., Raunser, S., Shen, A., Zhou, M., Gifford, C.A., Goodman, A.L.,

Joachimiak, G., Ordoñez, C.L., Lory, S. Walz, T., Joachimiak, A., & Mekalanos, J.J.

(2006). A virulence locus of Pseudomonas aeruginosa encodes a protein secretion

apparatus. Science, 312(5779), 1526–1530. doi:10.1126/science.1128393.

Navarro-Garcia, F., Ruiz-Perez, F., Cataldi, A., & Larzábal, M. (2019). Type VI secretion

system in pathogenic Escherichia coli: Structure, role in virulence, and acquisition.

Frontiers, 10(1965), 1-17. doi:10.3389/fmicb.2019.01965.

Nipič, D., Podlesek, Z., Budič, M., Black goi, M., & Žgur-Bertok, D. (2013). Escherichia

coli Uropathogenic-Specific Protein, Usp, is a bacteriocin-like genotoxin. The Journal of

Infectious Diseases, 208(10), 1545-1552. doi:10.1093/infdis/jit480.

PDQ Cancer Genetics Editorial Board. (2020, December 17). Genetics of Colorectal Cancer

61



(PDQ®). PDQ Cancer Information Summaries [Internet].

https://www.ncbi.nlm.nih.gov/books/NBK126744/.

Peng, Y., Wang, X., Shou, J., Zong, B., Zhang, Y., Tan, J., Chen, J., Hu, L., Zhu, Y., Chen, H.,

& Tan, C. (2016). Roles of Hcp family proteins in the pathogenesis of the porcine

extraintestinal pathogenic Escherichia coli type VI secretion system. Scientific Report, 6,

1-9. doi:10.1038/srep26816.

Raisch, J., Buc, E., Bonnet, M., Sauvanet, P., Vazeille, E., de Vallée, A., et al. (2014). Colon

cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell

proliferation. World J. Gastroenterol. 20, 6560–6572. doi: 10.3748/wjg.v20.i21.6560.

Rihtar, E., Žgur Bertok, D., & Podlesek, Z. (2020). The Uropathogenic Specific Protein Gene

usp from Escherichia coli and Salmonella bongori is a Novel Member of the TyrR and

H-NS Regulons. Microorganisms, 8(3), 330. MDPI AG. Doi:

10.3390/microorganisms8030330.

Roche-Lima, A., Carrasquillo-Carrión, K., Gómez-Moreno, R., Cruz, J., Velázquez-Morales,

D., Rogozin, I., & Baerga-Ortiz, A. (2018). The presence of genotoxic and/or

pro-inflammatory bacterial genes in gut metagenomic databases and their possible link

with inflammatory bowel diseases. Frontiers, 9(116), 1-8. doi:

10.3389/fgene.2018.00116.

Ruiz, F. M., Santillana, E., Spínola-Amilibia, M., Torreira, E., Culebras, E., & Romero, A.

62



(2015). Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the

Type VI Secretion System. PloS one, 10(6), e0129691. doi:

10.1371/journal.pone.0129691.

Sepehri, S., Khafipour, E., Bernstein, C., Coombes, B., Pilar, A., Karmali, M., Ziebell, K., &

Krause, D. (2011). Characterization of Escherichia coli isolated from gut biopsies of

newly diagnosed patients with inflammatory bowel disease. Inflammatory Bowel

Diseases, 17(7), 1451–1463. doi:10.1002/ibd.21509.

Shimpoh, T., Hirata, Y., Ihara, S., Suzuki, N., Kinoshita, H., Hayakawa, Y., Ota, Y., Narita, A.,

Yoshida, S., Yamada, A., & Koike, K. (2017). Prevalence of pks-positive Escherichia

coli in Japanese patients with or without colorectal cancer. Gut Pathog, 9(35). doi:

10.1186/s13099-017-0185-x

Silverman, J.M., Agnello, D.M., Zheng, H., Andrews, B. T., Li, M., Catalano, C. E., Gonen, T.,

Mougous, J. D. (2013). Haemolysin Coregulated Protein is an exported receptor and

chaperone of Type VI Secretion substrates. Molecular Cell, 51(5), 584-593. doi:

10.1016/j.molcel.2013.07.025.

Swidsinski, A., Khilkin, M., Kerjaschki, D., Schreiber, S., Ortner, M., Weber, J., et al. (1998).

Association between intraepithelial Escherichia coli and colorectal cancer.

Gastroenterology 115, 281–286. doi: 10.1016/S0016-5085(98)70194-5

The American Cancer Society. (2021, January 12). Colorectal Cancer Statistics: How Common

Is Colorectal Cancer? American Cancer Society.

https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html.

Vogtmann, E., Hua, X., Zeller, G., Sunagawa, S., Voigt, A.Y., Hercog, R., Goedert, J.J., Shi, J.,

63



Bork, P., & Sinha, R. (2016). Colorectal Cancer and the Human Gut Microbiome:

Reproducibility with Whole-Genome Shotgun Sequencing. PLoS One, 12;11(5),

e0155362. doi: 10.1371/journal.pone.0155362.

Weir, T. L., Manter, D. K., Sheflin, A. M., Barnett, B. A., Heuberger, A. L., & Ryan, E. P.

(2013). Stool microbiome and metabolome differences between colorectal cancer patients

and healthy adults. PLoS One 8:e70803. doi: 10.1371/journal.pone.0070803.

Wong R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. Journal of

experimental & clinical cancer research : CR, 30(1), 87.

https://doi.org/10.1186/1756-9966-30-87

Yang, X., Long, M., & Shen, X. (2018). Effector–immunity pairs provide the T6SS nanomachine

its offensive and defensive capabilities. Molecules, 23(5), 1-14.

doi:10.3390/molecules23051009.

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite:

protein structure and function prediction. Nature Methods, 12, 7–8.

doi:10.1038/nmeth.3213.

Zaw, M.T., Lai, Y.M., & Lin, Z. (2013). Uropathogenic Specific Protein: Epidemiologic marker

of Uropathogenic Escherichia coli as well as Non-specific DNase. International Journal

of Collaborative Research on Internal Medicine & Public Health, 5, 630-640.

https://www.iomcworld.org/articles/uropathogenic-specific-protein-epidemiologic-marke

r-ofuropathogenic-escherichia-coli-as-well-as-nonspecificdnase.pdf

64



Zaw, M.T., Yamasaki, E., Yamamoto, S., Nair, G.B., Kawamoto, K., & Kurazono, H. (2013).

Uropathogenic specific protein gene, highly distributed in extraintestinal

uropathogenic Escherichia coli, encodes a new member of H-N-H nuclease superfamily. 

Gut Pathog, 5(13), 1-9. doi:10.1186/1757-4749-5-13.

Zhou, Y., Yu, H., Ni, J., Zeng, L., Teng, Q., Kim, K. S., Zhao, G. P., Guo, X., & Yao, Y. (2012).

HCP Family Proteins Secreted via the Type VI Secretion System Coordinately Regulate

Escherichia Coli K1 Interaction with Human Brain Microvascular Endothelial Cells.

Infection and Immunity, 80(3), 1243–51. doi: 10.1128/iai.05994-11.

Supplementary Information

Table S1. Genes of interest with corresponding accession number

Gene Accession Number

hcp (domain) CP043181.1:3517124-3518905

hcp-1 CP006632.1:246100-246582

hcp-2 CP006632.1:267403-267921

hcp-3 CP006632.1:4258749-4259897

tssK CP043181.1:3647520-3648866

usp AB027193

vgrG1 CP006632.1:268131-269756
Table S1. The genes of interest of this study are listed in the first column, followed by their unique
accession numbers, obtained from NCBI database.

Table S2. Presence of T6SS genes of interest in small and large adenoma cohorts

Healthy cohort (N = 61) Small Adenoma cohort (N = 27) Large Adenoma cohort (N = 15)

Gene Total hits Positives Frequency % Total hits Positives
Frequency %
(P-value)

Total hits Positives
Frequency %
(P-value)

AMmurB 168 21 34 57 8 30 (0.81) 75 8 53 (0.24)

ECmurB 243 21 34 71 11 41 (0.63) 20 3 20 (0.36)
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EFmurB 22 7 11 5 2 7 (0.72) 16 2 13 (1.00)

HCP 66 9 15 29 2 7 (0.49) 6 2 13 (1.00)

HCP-1 59 7 11 8 2 7 (0.72) 0 0 0 (0.33)

HCP-2 38 5 8 16 5 19 (0.27) 0 0 0 (0.58)

HCP-3 80 14 23 6 2 7 (0.13) 2 1 7 (0.28)

tssK 29 11 18 1 1 4 (0.10) 16 2 13 (1.00)

USP 88 11 18 32 1 4 (0.10) 4 1 7 (0.44)

vgrG1 274 14 23 121 11 41 (0.12) 33 7 47 (0.10)

Table S2. The columns represent the Gene names, Total number of hits, Number of patients with hits
(Positives), and the corresponding frequency of each gene within each cohort. The P-values displayed
were obtained using Fisher’s Exact Test when individually comparing the Small Adenoma and Large
Adenoma positives to those of the Healthy cohort. P-values are statistically significant when P < 0.05.

Table S3. Number of hits per positive patient per gene per cohort

Healthy Cohort (N = 61) Small Adenoma Cohort (N
= 27)

Large Adenoma Cohort (N
= 15) Adenomas Cohort (N = 42) Cancer Cohort (N = 53)

Gene Patient ID Numbe
r of hits Patient ID Numbe

r of hits Patient ID Numbe
r of hits Patient ID Numbe

r of hits Patient ID Numbe
r of hits

AMmurB SAMEA246688
7 27 SAMEA246694

3 7 SAMEA2466895 8 SAMEA246694
3 7 SAMEA246690

8 2

SAMEA246689
0 5 SAMEA246695

9 3 SAMEA2466906 6 SAMEA246695
9 3 SAMEA246691

5 5

SAMEA246689
1 10 SAMEA246696

0 2 SAMEA2466910 2 SAMEA246696
0 2 SAMEA246692

2 5

SAMEA246689
6 4 SAMEA246697

4 10 SAMEA2466921 16 SAMEA246697
4 10 SAMEA246692

6 16

SAMEA246689
8 15 SAMEA246697

5 3 SAMEA2466925 7 SAMEA246697
5 3 SAMEA246693

0 20

SAMEA246690
3 7 SAMEA246699

4 1 SAMEA2466935 5 SAMEA246699
4 1 SAMEA246693

1 3

SAMEA246690
7 6 SAMEA246700

3 28 SAMEA2466945 16 SAMEA246700
3 28 SAMEA246693

2 2

SAMEA246690
9 4 SAMEA246700

6 4 SAMEA2466950 16 SAMEA246700
6 4 SAMEA246693

4 4

SAMEA246691
1 10 SAMEA246689

5 8 SAMEA246693
7 8

SAMEA246696
1 45 SAMEA246690

6 6 SAMEA246694
2 4

SAMEA246696
5 1 SAMEA246691

0 2 SAMEA246694
7 2

SAMEA246698
2 5 SAMEA246692

1 16 SAMEA246695
7 4

SAMEA246701
6 7 SAMEA246692

5 7 SAMEA246696
4 35

SAMEA246702
1 1 SAMEA246693

5 5 SAMEA246696
8 9

SAMEA246702
4 11 SAMEA246694

5 16 SAMEA246697
2 1
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SAMEA246702
5 4 SAMEA246695

0 16 SAMEA246697
3 29

SAMEA246702
8 1 SAMEA246698

3 10

SAMEA246703
3 3 SAMEA246698

7 123

SAMEA246703
5 2 SAMEA246698

9 48

SAMEA246703
9 4 SAMEA246699

1 4

SAMEA246704
1 1 SAMEA246699

3 2

SAMEA246700
1 20

SAMEA246700
2 12

SAMEA246700
4 4

clbB SAMEA246701
3 2 SAMEA246691

5 2

SAMEA246701
8 2 SAMEA246700

1 1

SAMEA246703
5 3 SAMEA246700

4 1

cnf-1 SAMEA246690
1 2 SAMEA246697

5 4 SAMEA246697
5 4 SAMEA246691

5 29

SAMEA246691
1 1 SAMEA246693

2 1

SAMEA246697
9 8 SAMEA246694

8 27

SAMEA246701
2 6 SAMEA246698

4 5

SAMEA246701
3 23 SAMEA246700

4 3

SAMEA246701
8 47

SAMEA246703
5 70

SAMEA246704
1 3

ECmurB SAMEA246688
7 3 SAMEA246691

9 1 SAMEA2466921 5 SAMEA246691
9 1 SAMEA246691

5 21

SAMEA246689
1 69 SAMEA246692

3 6 SAMEA2466949 12 SAMEA246692
3 6 SAMEA246691

7 19

SAMEA246689
7 2 SAMEA246694

3 3 SAMEA2466962 4 SAMEA246694
3 3 SAMEA246692

2 3

SAMEA246691
1 9 SAMEA246695

1 5 SAMEA246695
1 5 SAMEA246692

7 2

SAMEA246691
3 1 SAMEA246695

2 8 SAMEA246695
2 8 SAMEA246693

7 3

SAMEA246694
0 32 SAMEA246695

9 2 SAMEA246695
9 2 SAMEA246693

8 95

SAMEA246697
9 5 SAMEA246696

0 33 SAMEA246696
0 33 SAMEA246694

1 3

SAMEA246701
2 3 SAMEA246696

6 4 SAMEA246696
6 4 SAMEA246694

4 102

SAMEA246701
3 12 SAMEA246697

1 2 SAMEA246697
1 2 SAMEA246694

6 9

SAMEA246701
6 26 SAMEA246699

9 7 SAMEA246699
9 7 SAMEA246694

8 9

SAMEA246701
7 8 SAMEA246700

6 2 SAMEA246700
6 2 SAMEA246695

7 4

SAMEA246701
8 17 SAMEA246692

1 5 SAMEA246698
4 2

SAMEA246701
9 1 SAMEA246694

9 12 SAMEA246698
6 14
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SAMEA246702
1 4 SAMEA246696

2 4 SAMEA246698
9 56

SAMEA246702
4 2 SAMEA246699

1 5

SAMEA246703
0 6 SAMEA246699

3 4

SAMEA246703
2 4 SAMEA246699

8 14

SAMEA246703
3 14 SAMEA246700

1 7

SAMEA246703
5 26 SAMEA246700

2 13

SAMEA246703
7 1 SAMEA246700

4 4

SAMEA246704
2 4 SAMEA246700

9 4

EFmurB SAMEA246689
7 1 SAMEA246692

3 3 SAMEA2466935 5 SAMEA246692
3 3 SAMEA246693

8 1

SAMEA246690
3 1 SAMEA246699

5 2 SAMEA2466949 12 SAMEA246699
5 2 SAMEA246694

2 8

SAMEA246691
1 3 SAMEA246693

5 5 SAMEA246694
8 2

SAMEA246701
8 3 SAMEA246694

9 12 SAMEA246696
8 6

SAMEA246703
0 10

SAMEA246703
4 2

SAMEA246703
5 4

gelE SAMEA246691
1 4 SAMEA246692

3 2 SAMEA2466935 5 SAMEA246692
3 2 SAMEA246693

8 1

SAMEA246702
5 2 SAMEA246699

5 3 SAMEA2466949 10 SAMEA246699
5 3 SAMEA246694

2 14

SAMEA246702
9 3 SAMEA246693

5 5 SAMEA246694
8 6

SAMEA246703
0 15 SAMEA246694

9 10 SAMEA246696
8 5

SAMEA246698
6 4

HCP SAMEA246689
1 4 SAMEA246696

0 26 SAMEA2466949 4 SAMEA246696
0 26 SAMEA246690

4 2

SAMEA246691
3 2 SAMEA246696

6 4 SAMEA2466962 2 SAMEA246696
6 4 SAMEA246691

5 13

SAMEA246697
9 3 SAMEA246694

9 4 SAMEA246694
6 4

SAMEA246701
2 2 SAMEA246696

2 2 SAMEA246694
8 12

SAMEA246701
3 8 SAMEA246695

7 3

SAMEA246701
8 19 SAMEA246700

2 10

SAMEA246701
9 2 SAMEA246700

4 3

SAMEA246703
3 5

SAMEA246703
5 23

HCP-1 SAMEA246689
1 36 SAMEA246692

3 6 SAMEA246692
3 6 SAMEA246691

5 12

SAMEA246691
1 2 SAMEA246699

9 2 SAMEA246699
9 2 SAMEA246693

8 39

SAMEA246694
0 14 SAMEA246694

4 21

SAMEA246698
0 1 SAMEA246698

6 7
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SAMEA246701
7 2 SAMEA246698

9 4

SAMEA246703
0 3 SAMEA246699

1 3

SAMEA246703
3 2 SAMEA246699

3 1

SAMEA246700
2 3

HCP-2 SAMEA246689
1 27 SAMEA246692

3 5 SAMEA246692
3 5 SAMEA246693

8 38

SAMEA246691
1 2 SAMEA246695

2 3 SAMEA246695
2 3 SAMEA246698

6 6

SAMEA246703
0 3 SAMEA246696

0 1 SAMEA246696
0 1 SAMEA246698

9 41

SAMEA246703
3 4 SAMEA246697

1 2 SAMEA246697
1 2 SAMEA246699

3 3

SAMEA246703
5 3 SAMEA246699

9 6 SAMEA246699
9 6 SAMEA246699

8 3

SAMEA246700
2 3

HCP-3 SAMEA246689
1 3 SAMEA246692

3 4 SAMEA2466949 2 SAMEA246692
3 4 SAMEA246691

5 5

SAMEA246691
1 3 SAMEA246696

6 3 SAMEA246696
6 3 SAMEA246692

7 2

SAMEA246691
3 1 SAMEA246694

9 2 SAMEA246694
1 2

SAMEA246697
9 2 SAMEA246694

6 9

SAMEA246701
2 3 SAMEA246694

8 8

SAMEA246701
3 6 SAMEA246695

7 5

SAMEA246701
6 17 SAMEA246698

4 1

SAMEA246701
8 14 SAMEA246700

1 2

SAMEA246701
9 2 SAMEA246700

2 4

SAMEA246702
1 3

SAMEA246703
2 3

SAMEA246703
3 5

SAMEA246703
5 15

SAMEA246704
2 5

tcpC SAMEA246697
9 2 SAMEA246692

7 1

SAMEA246701
3 7 SAMEA246693

2 2

SAMEA246701
8 14 SAMEA246694

6 3

SAMEA246694
8 3

SAMEA246700
4 1

tssK SAMEA246689
1 4 SAMEA246697

5 1 SAMEA2466949 7 SAMEA246697
5 1 SAMEA246692

2 86

SAMEA246689
7 1 SAMEA2466962 9 SAMEA246694

9 7 SAMEA246692
7 2

SAMEA246691
1 2 SAMEA246696

2 9 SAMEA246693
2 2

SAMEA246701
2 5 SAMEA246694

6 14
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SAMEA246701
7 3 SAMEA246694

8 14

SAMEA246701
8 2 SAMEA246695

7 4

SAMEA246701
9 5 SAMEA246698

4 3

SAMEA246702
2 2 SAMEA246699

8 8

SAMEA246703
2 4 SAMEA246700

1 3

SAMEA246703
5 2 SAMEA246700

4 6

SAMEA246704
1 3

USP SAMEA246689
1 4 SAMEA246696

0 32 SAMEA2466962 4 SAMEA246696
0 32 SAMEA246690

4 4

SAMEA246691
1 3 SAMEA246696

2 4 SAMEA246691
5 18

SAMEA246697
9 3 SAMEA246692

2 13

SAMEA246701
2 3 SAMEA246694

1 3

SAMEA246701
3 13 SAMEA246694

6 6

SAMEA246701
8 24 SAMEA246694

8 10

SAMEA246701
9 5 SAMEA246695

6 2

SAMEA246703
2 5 SAMEA246695

7 4

SAMEA246703
3 7 SAMEA246700

1 4

SAMEA246703
5 22 SAMEA246700

2 6

SAMEA246704
1 2 SAMEA246700

4 2

vgrG1 SAMEA246689
1 152 SAMEA246689

9 1 SAMEA2466893 2 SAMEA246689
9 1 SAMEA246692

6 2

SAMEA246689
7 1 SAMEA246692

3 30 SAMEA2466906 3 SAMEA246692
3 30 SAMEA246692

7 1

SAMEA246691
1 15 SAMEA246692

9 1 SAMEA2466921 3 SAMEA246692
9 1 SAMEA246693

7 3

SAMEA246694
0 13 SAMEA246694

3 3 SAMEA2466935 2 SAMEA246694
3 3 SAMEA246693

8 124

SAMEA246701
7 9 SAMEA246695

1 8 SAMEA2466945 6 SAMEA246695
1 8 SAMEA246694

4 61

SAMEA246701
8 2 SAMEA246695

2 25 SAMEA2466949 16 SAMEA246695
2 25 SAMEA246694

7 1

SAMEA246702
4 5 SAMEA246695

9 3 SAMEA2466962 2 SAMEA246695
9 3 SAMEA246696

3 1

SAMEA246702
5 5 SAMEA246696

0 16 SAMEA246696
0 16 SAMEA246698

3 2

SAMEA246702
6 2 SAMEA246697

1 8 SAMEA246697
1 8 SAMEA246698

6 21

SAMEA246703
0 14 SAMEA246699

9 26 SAMEA246699
9 26 SAMEA246698

9 224

SAMEA246703
3 44 SAMEA246700

8 3 SAMEA246700
8 3 SAMEA246699

1 7

SAMEA246703
5 12 SAMEA246689

3 2 SAMEA246699
3 25

SAMEA246703
7 1 SAMEA246690

6 3 SAMEA246699
8 11

SAMEA246704
0 1 SAMEA246692

1 3 SAMEA246700
2 6

SAMEA246693
5 2 SAMEA246700

4 1
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SAMEA246694
5 6

SAMEA246694
9 16

SAMEA246696
2 2

Table S3. The preceding table groups all the patients considered in the study (all those who displayed at
least one hit in each replica group for each individual genes). The unique Patient IDs, which identify each
patient of the study, as well as the number of hits each patient had for each individual gene are presented.
Following the first column, which corresponds to all the genes studied, the five patient cohorts are
presented (from left to right: healthy, small adenoma, large adenoma, grouped adenomas, and cancer).

Table S4. Presence and frequency of genes of interest in the selected metagenomic databases

cohorts without outlier values

Healthy Cohort (N=61)

Gene AMmurB ECmurB
EFmur

B
Hcp Hcp-1 Hcp-2 Hcp-3 tssK Usp vgrG1

Q1 3 3 1 2 2 3 3 2 3 2

Q3 10 16 4 14 14 16 6 4 13 14

IQR 8 13 3 12 12 13 3 2 10 12

Upper Limit 21 35 9 31 32 35 11 7 28 32

Lower Limit -9 -17 -4 -15 -16 -17 -2 -1 -12 -16

Total Hits 98 174 13 66 24 38 34 29 88 78

Mean Hits ± σ 5 ± 4 9 ± 9 2 ± 1 7 ± 8 4 ± 5 8 ± 11 3 ± 1 3 ± 1 8 ± 8 7 ± 5

Positives 19 20 6 9 6 5 11 11 11 12

Frequency %
of Positives

31 33 10 15 10 8 18 18 18 20

Adenomas Cohort (N=42)

Gene AMmurB ECmurB
EFmur

B
Hcp Hcp-1 Hcp-2 Hcp-3 tssK Usp vgrG1

Q1 3 2 3 3 - 2 - - - 2

Q3 13 7 9 15 - 6 - - - 16

IQR 10 5 6 12 - 4 - - - 14

Upper Limit 28 15 18 33 - 12 - - - 37

Lower Limit -12 -6 -7 -15 - -5 - - - -19

Total Hits 132 58 21 66 8 16 9 17 36 154

Mean Hits ± σ 8 ± 7 4 ± 3 5 ± 4 7 ± 11 4 ± 3 3 ± 2 3 ± 1 6 ± 4 18 ± 20 9 ± 10
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Positives 16 13 4 9 2 5 3 3 2 18

Frequency of
positives
(P-value)

38 (0.53) 31 (1.00) 10 (1.00) 21 (0.43) 5 (0.47) 12 (0.74) 7 (0.15) 7 (0.15) 5 (0.07) 43 (0.02)

Cancer Cohort (N=53)

Gene AMmurB ECmurB
EFmur

B
Hcp Hcp-1 Hcp-2 Hcp-3 tssK Usp vgrG1

Q1 4 4 2 3 3 3 2 3 3 1

Q3 18 17 7 12 17 38 7 14 10 25

IQR 15 13 6 9 14 35 5 11 7 24

Upper Limit 40 36 15 26 37 91 13 31 21 61

Lower Limit -18 -16 -7 -11 -17 -50 -5 -14 -8 -35

Total Hits 196 134 17 46 51 93 36 53 68 141

Mean Hits ± σ 9 ± 9 7 ± 6 4 ± 3 7 ± 5 7 ± 7 16 ± 18 4 ± 3 6 ± 5 6 ± 5 11 ± 17

Positives 22 18 4 7 7 6 9 9 11 13

Frequency of
positives
(P-value)

42 (0.33) 34 (1.00) 8 (0.75) 13 (1.00) 13 (0.77) 11 (0.75) 17 (1.00) 17 (1.00) 21 (0.81) 25 (0.65)

Table S4. In order to tend to one of the study’s limitations, the statistical outliers were removed by finding
the first (Q1) and third (Q3) quartile values, as well as the interquartile range (IQR) of the hit values
obtained for each patient in each cohort (Table S3). From these values, the upper and lower limits were
calculated by multiplying the IQR value by 1.5 and adding or subtracting that value to Q1 and Q3,
respectively. After eliminating these, the total amount of hits obtained, the average amount of these hits,
as well as the corresponding positive patients and their frequency percentages was found. Genes with
three or less sample hits were not included in this statistical analysis (-).

72




